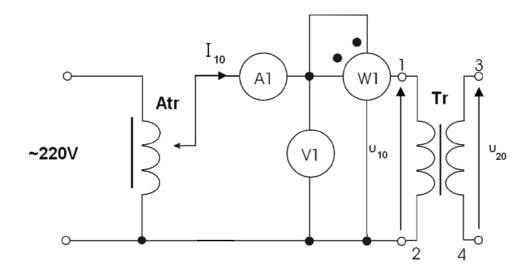

Temat ćwiczenia: **BADANIE TRANSFORMATORA JEDNOFAZOWEGO**

1. Wyznaczanie przekładni transformatora

a) zmontować układ według podanego schematu


b) wyniki pomiarów zapisać w tabeli

U ₁₀	U ₂₀	К	K _{śr}
V	V	-	-

$$K = \frac{U_{10}}{U_{20}}$$

2. Badanie stanu jałowego transformatora

a) zmontować układ według podanego schematu

b) wyniki pomiarów zapisać w tabeli

$U_{1N} = \dots V$										
U	10	I ₁₀		$\Delta P_{Fe} \approx P_0$		$\cos \phi_0$	Q	lμ	I _{Fe}	
dz	V	dz	Α	dz	W	-	var	А	Α	

c) wzory obliczeniowe

współczynnik mocy:

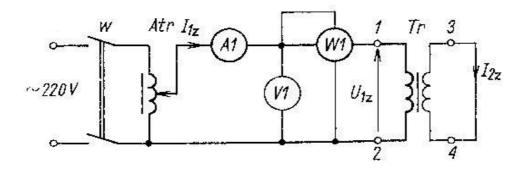
$$cos\phi_0 = \frac{\Delta P_{Fe}}{U_{10}I_{10}} = \frac{P_0}{U_{10}I_{10}}$$

• moc bierna pobierana:

$$\mbox{Q = } \Delta \mbox{P}_{\mbox{Fe}} \mbox{ tg } \phi_0 \! \approx \mbox{ } P_0 \mbox{ tg } \phi_0$$

• prąd magnesujący (składowa bierna prądu):

$$I_{\mu} = I_{10} \sin \varphi_0$$


• prąd strat w żelazie (składowa czynna prądu):

$$I_{Fe} = I_{10} \cos \varphi_0$$

3. <u>Badanie stanu zwarcia transformatora</u>

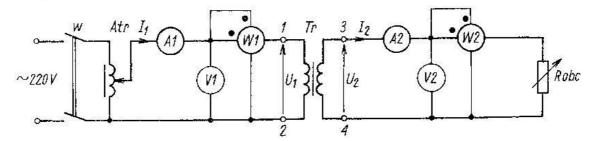
Przy próbie zwarcia pomiarowego jedno z uzwojeń transformatora (np. uzwojenie wtórne) zwiera się, zaś do drugiego uzwojenia doprowadza się napięcie. Napięcie, które w zasilanym uzwojeniu wywołuje przepływ prądu o wartości równej prądowi znamionowemu, nazywa się napięciem zwarcia U_z .

a) zmontować układ według podanego schematu

b) wyniki pomiarów zapisać w tabeli

I _{1N} = A										
U	10	I _{1z}		P _z		cos φ _z	Z_{1z}	R _{1z}	X _{1z}	
dz	V	dz	Α	dz	W	-	Ω	Ω	Ω	

- c) wzory obliczeniowe
- współczynnik mocy $cos\gamma_{z} = \frac{\Delta P_{Cu}}{U_{1z}I_{1z}} = \frac{P_{z}}{U_{1z}I_{1z}}$
- impedancja zwarciowa $Z_{1\scriptscriptstyle E} = \frac{U_{1\scriptscriptstyle E}}{I_{1\scriptscriptstyle E}}$
- rezystancja zwarciowa $R_{1z} = \frac{P_z}{I^2_{1z}}$
- reaktancja zwarciowa $X_{1z} = \sqrt{Z_{1z}^2 R_{1z}^2}$


4. Badanie transformatora obciażonego

Sprawność transformatora wyraża się wzorem

$$\eta = \frac{P_2}{P_1}$$

w którym: P_2 – moc oddawana przez transformator do obciążenia, P_1 – moc pobierana przez transformator ze źródła napięcia.

a) zmontować układ według podanego schematu

b) wyniki pomiarów zapisać w tabeli

$U_{1N} = \dots V$ $U_{2N} = \dots V$ $I_{2N} = \dots A$									
I ₂		U ₂		F	1	P ₂		η	
dz	Α	dz	V	dz	W	dz	W	-	

W czasie pomiarów należy utrzymywać stałą wartość napięcia pierwotnego, równą wartości znamionowej tego napięcia.

5. Opracowanie ćwiczenia

- 1) Wykreśl charakterystyki $I_{10} = f(U_{10})$, $P_{Fe} = f(U_{10})$, $Q = f(U_{10})$, $I_{Fe} = f(U_{10})$, $\cos \phi_0 = f(U_{10})$ dla stanu jałowego transformatora i omów ich przebiegi. Określ znamionowy prąd stanu jałowego I_{10N} i znamionowy współczynnik mocy $\cos \phi_N$.
- 2) Wykreśl charakterystyki $I_{1z} = f(U_{1z})$, $\Delta P_z = f(U_{1z})$, $\cos \phi = f(U_{1z})$ dla stanu zwarcia transformatora i omówić ich przebieg. Określ napięcie zwarcia U_z i wyraź je w procentach znamionowego napięcia pierwotnego

$$\frac{U_z}{U_{1N}} \cdot 100\%$$

3) Wykreślić charakterystyki $U_2 = f(I_2)$ i $\eta = f(I_2)$ dla transformatora obciążonego i omów ich przebieg.

6. Wnioski

7. Zestawienie narzędzi i przyrządów pomiarowych